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Abstract
We present for the first time the feasibility to recover the stiffness (here shear modulus) distribution of a three-dimensional heterogeneous

sample using measured surface displacements and inverse algorithms without making any assumptions about local homogeneities and
the stiffness distribution. We simulate experiments to create measured displacements and augment them with noise, significantly higher
than anticipated measurement noise. We also test two-dimensional problems in plane strain with multiple stiff inclusions. Our inverse strategy
recovers the shear modulus values in the inclusions and background well, and reveals the shape of the inclusion clearly.

Introduction
Optical techniques based on digital cameras are increasingly

used to measure surface displacements or strains on a sample

under loading. In general, this requires some form of a pattern

on the sample’s surface to track deformations in two-

dimensional space with one digital camera and in three-

dimensional space with two or more digital cameras. The out

of plane displacement component (in the third dimension) is

quantified using computer vision techniques. Among the

displacement-tracking algorithms, the pure grid method appears

to be the simplest as it utilizes a uniform grid pattern. The dis-

placements are evaluated on the nodes and strains are computed

from displacement gradients using the strain displacement rela-

tion: 1 = 0.5 ((∇u) + (∇u)T) where 1 denotes the strain tensor

and u denotes the displacement vector. Digital image correlation

(DIC) methods utilize random speckle (dot) patterns,[1] decom-

pose the problem domain into a mesh consisting of grid points

and facets. The displacements are calculated from facet similar-

ities/correlations between deformed and undeformed images.

DIC systems are commercially as well as open source available,

while the latter ones are mostly confined to two-dimensional

capabilities. Researchers at the Naval Research Laboratories

led by Dr. John Michopoulos introduced a mesh-free random

grid method that also relies on random speckle patterns, but

does not require facets.[2,3] Instead, centroids of speckles are iden-

tified and their displacements between pre- and post-deformed

images are calculated. Digital strain imaging was developed by

the same group and quantifies strains directly from the speckle

pattern,[4] resulting in lower strain noise levels as opposed to cal-

culating them via noisy displacement differentiation.

Displacement or strain measurements based on digital cam-

eras provide opportunities to improve the mechanical character-

ization of solids. For example, uniaxial tensile tests are

currently used to characterize a material’s stress–strain behav-

ior. This, however, is a crude approach since (1) the tensile test-

ing device has some play in the fixture (rigid body motion) and

is falsely recorded as elongation (or stretch) of the specimen,

(2) slip may occur resulting in non-axial loading conditions,

and (3) local strains due to necking are significantly different

from averaged recorded strains. Measuring strains using one

of the aforementioned techniques would address all these

issues.[5,6] The authors of this paper took this one step further

and utilized boundary displacements to map the model param-

eters of a material with varying parameter distribution by solv-

ing an inverse problem in elasticity.[7,8] This has a potential in

characterizing engineered tissues, monitoring growth and

remodeling of tissues, characterizing additively manufactured

materials, and analyzing collective cell expressions locally

that are all associated with changes in the stiffness distribution

in space. Measurements were simulated using finite element

methods, and the problem domain was confined to two dimen-

sions to reduce computational time when solving the inverse

problem. Further, we assumed a linear elastic and incompress-

ible material behavior under plane strain conditions. Simulated

displacement measurements were assumed to be known solely

on boundary edges (assuming plane strain conditions) and the

shear moduli were introduced as unknowns on finite element

mesh nodes and interpolated throughout the domain with linear

shape functions. Thus, the total number of unknown shear

moduli was equal to the mesh size, i.e., total number of nodes.
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No assumptions were made on locally homogeneous regions as

was done in other works.[9–11]

Since the authors of this paper demonstrated proof of con-

cept in prior works for two-dimensional problem domains

composed of one and two stiff inclusions in a homogeneous

background, one may raise the question if this procedure may

work for a large number of stiff inclusions. Further, it is not

obvious that this methodology could actually work for three-

dimensional problems using surface displacement measure-

ments as well. We acknowledge that the total number of

unknown shear moduli increases dramatically for the problem

domain in three-dimensional space. To the best of our knowl-

edge, in this paper, we demonstrate for the first time that it is

feasible to recover (1) inclusions with varying stiffness values

and diameters, (2) nine stiff inclusions embedded in a homo-

geneous background, and (3) the shear modulus distribution

for a three-dimensional problem domain using solely boun-

dary displacement measurements and without any a priori

assumptions about the shear modulus distribution. A thor-

ough literature review on related works, but using prior infor-

mation on the shear modulus distribution was provided in.[7]

Key ingredients that allow the successful solution of the

inverse problem with limited measurements on the specimen’s

surface are the (a) inverse problem formulation posed as a

constrained minimization problem, (b) regularization term

in the objective function to smooth the overall reconstruction

and control how close the measured displacements fit the

computed displacements, (c) accommodation of multiple

measurements (from multiple experiments) in the objective

function to yield a unique solution, and (d) the efficient com-

putation of the gradient for the optimization scheme using the

adjoint equations. Overall, the methodology presented in this

paper could have a great impact and help researchers charac-

terize in vitro samples, since it requires low-cost digital cam-

eras for data acquisition.

Methods
We assume the material to be isotropic, non-homogeneous,

and linear elastic. We apply forces in the form of indenta-

tions to gently deform the problem domain and utilize boun-

dary deformations to solve an inverse problem, discussed in

more detail below. Acquisition of boundary displacement

measurements will be simulated with finite element meth-

ods.[12] For the two-dimensional problems, we will assume

plane strain conditions of an incompressible material. For

the three dimensional problem, we will assume that the

material is incompressible as well, since many soft tissues

or engineered tissues are known to be nearly incompress-

ible. The inverse problem is posed as a constrained optimi-

zation problem, where the equilibrium equations in elasticity

represent the constraint of the problem. In more detail, given

N measured boundary displacement data sets, we seek to

find the optimal shear modulus distribution μ such that the

objective function:
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∑
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is minimized, subject to the constraint of the equilibrium

equations as detailed further below. The objective function

is provided in discretized form using finite element shape

functions N e
j (x) for the e-th element and j-th local node

number. In Eq. (1), ne and nn are the number of nodes on

element e and the total number of elements throughout the

entire problem domain, respectively. The first term is

referred to as the boundary displacement correlation term,

where u
i
e and (uie)meas are the i-th computed and measured

boundary displacement datasets, respectively, and we set

u
i
e − (uie)meas

( )

j
= 0 if it is not on the measured boundary.

We emphasize that it is important to conduct a large number

of experiments denoted by N in order to drive the recovered

shear modulus distribution to a unique solution. The com-

puted displacements uie satisfy the equations of equilibrium,

solved with finite element methods, and referred to as the

forward problem. We note that u
i
e also depends on the

shear modulus distribution. To simplify the implementation

and make use of the currently existing in-house written

program structure, we define the first integral in Eq. (1)

over finite element volumes Ωe at measured boundaries

rather than using boundary (surface) elements directly.

Consequently, shape functions N
e are defined over Ωe at the

boundary; however, no measurements from the domain’s inte-

rior are utilized. This has been thoroughly discussed in[7] and

therein concluded that it introduces different weights in corre-

lating measured and computed displacements.

Ideally, the boundary displacement correlation term should

be as close as possible to a zero value after solving the minimi-

zation problem. However, due to noise in measured boundary

displacements (uie)meas, we do not wish to fit this term beyond

inherent noise level. Since the inverse problem is highly ill-

posed, this would manifest itself in dramatically amplified

noise levels in the recovered shear modulus distribution. We

address this issue with a so-called regularization term in the

second term of the objective function, and select the total var-

iation diminishing regularization that penalizes oscillations in

the shear modulus distribution and smooths the overall solu-

tion. In Eq. (1), this regularization term is provided in discre-

tized form with the nodal shear modulus me
j , a constant c0 =

0.01 to avoid singularities when differentiating, and the regular-

ization factor α. The regularization factor α assigns a weight

to the regularization term and with that its relative contribution

to the boundary displacement correlation term. We select the
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regularization factor such that the boundary displacement cor-

relation term is not smaller than the actual noise level. Later

in the “Two-dimensional problem domain with two inclusions

of different sizes and shear modulus values” section, we rewrite

the displacement correlation term by scaling it with measured

displacements, take the square root, and require this to be of

the order of the relative noise in the displacement. This is

also known as Morozov’s discrepancy principle[13] and given

that our group has extensive experience with these computa-

tions, the actual regularization factors were selected after few

trial and errors.

The inverse problem is solved using a quasi-Newton

method, more precisely, the limited Broyden–Fletcher–

Goldfarb–Shanno method detailed in.[14] This requires the cal-

culation of the gradient of the objective function with respect to

the shear moduli. We calculate the gradient efficiently using the

adjoint method and the interested reader is referred to[15,16] for a

thorough derivation. The constrained minimization procedure

is considered to be converged when the relative change in the

objective function or the gradient is close to machine precision.

Finally, the computations were done on Ada, an IBM

X86_64 cluster hosted and maintained by the High

Performance Research Computing group at Texas A&M

University. Ada has 874 nodes and most of the compute

nodes (792) are IBM NextScale nx360 M4 dual socket servers

based on the Intel Xeon 2.5 GHz E5-2670 v2 10-core proces-

sor, commonly known as the Ivy Bridge. The inverse program

utilizes a combination of OpenMP for each linear matrix vector

solve and MPI to perform the computations for each measure-

ment i in Eq. (1) on an individual computing node with 20 cores

each. Thus, for a total number of N measurements, we utilize

N computing nodes on the supercomputer.

Results
Two-dimensional problem domain with two
inclusions of different sizes and shear
modulus values
We consider a 1 cm × 1 cm domain with two stiff inclusions: a

small inclusion with a radius of 0.1 cm and a larger one with a

radius of 0.2 cm surrounded by a softer homogeneous back-

ground material as shown in Fig. 1. The coordinates of the cen-

ter of the inclusions are (0.4 cm, 0.35 cm) and (0.75 cm, 0.75

cm) for the small and large inclusions, respectively, assuming

that the coordinate system’s origin (0 cm, 0 cm) is at the bot-

tom left corner. The target shear modulus value of the back-

ground is 10 kPa and the shear moduli are 50 kPa for the

small inclusion and 75 kPa for the large inclusion. As shown

in Fig. 1(a), we have fixed the bottom boundary and forces

represented by arrows are applied on top edge as well as on

sides. The problem domain is discretized with 7200 linear tri-

angular elements (61 nodes are uniformly distributed in each

direction). The forces are applied only in vertical directions.

Varying the locations of force application represents a

new simulated experiment and provides distinct boundary

Figure 1. The problem domain with two stiff inclusions surrounded by a
softer background material. Along the diagonal line, the shear modulus
reconstructions are plotted and analyzed. The arrows indicate all applied
forces and are combined according to Table I. (a) Fixed boundary conditions
are applied on the bottom edge; (b) roller support conditions are imposed on
bottom edge; (c) top boundary is subjected to fixed conditions; (d) top
boundary is supported with rollers. Note: SM represents reconstructed shear
modulus (unit in the color bar: 10 kPa).

Table I. Combination of forces applied on the boundaries.

Simulated
experiment

Sr. no. of arrow in figure

Left
boundary

Right
boundary

Top/bottom
boundary

1 – – 4

2 – – 5

3 – – 6

4 – – 7

5 1 10 5

6 2 9 5

7 3 8 5

8 1 10 7

9 2 9 7

10 3 8 7

11 3 10 5

12 3 10 7
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displacement data sets, which ultimately will help in achieving

well-recovered shear modulus distributions. Each arrow repre-

senting a force has been assigned a number and their combined

loadings for each simulated experiment have been summarized

in Table I. A total of 12 simulated experiments were conducted

and will be used to solve the inverse problem later in this sec-

tion. Further, in each simulated experiment, a force of 0.2 N is

applied and distributed over eight finite element nodes. For

example, for the simulated experiments 1–4 in Table I, the sin-

gle force indentations are applied on the top boundary edge

sequentially and each distributed over eight neighboring

nodes. On the other hand, for simulated experiments 5–12 in

Table I, the forces are applied as a combination of forces on

sides as well as on top edges. In this scenario, the forces are

distributed on four neighboring nodes at the top and two

neighboring nodes on each left and right boundaries. This

force will produce small deformations and can be effectively

measured using digital cameras and displacement-tracking

techniques discussed in the Introduction section. The resulting

boundary displacements on all three edges are assumed to be

the “measured” data. We also add 0.1% and 1% random

noise to the boundary displacements, since measured data con-

tain noise.

The reconstructed shear modulus distributions are given in

Figs 2(b)–2(d) for noise levels of 0% (i.e., without noise),

0.1%, and 1%, respectively, together with the target shear mod-

ulus distribution in Fig. 2(a) for comparison. In Fig. 2(e), we

plot the reconstructed shear modulus values along the diagonal

line introduced in Fig. 1(a). The regularization factors for the

reconstructions in Figs 2(b)–2(d) were chosen to be 1 ×

10−13, 5 × 10−12, and 1 × 10−10, respectively. We observe

that the locations of the inclusion centers are identified pre-

cisely for all noise levels. However, we notice that the shear

modulus value for the small inclusion has been significantly

underestimated and its circular shape appears to increase in

diameter with increasing noise levels. The large inclusion on

the top right corner has been reconstructed very well and is

close to the target inclusion for all noise levels.

Figure 2(e) represents the shear modulus plots for all noise

levels together with the target over the diagonal line drawn in

Fig. 1(a). Conclusions stated above are clearly observed in

this plot.

In Fig. 1(b), we have replaced the previous fixed support

with a roller support. The applied forces and other parameters

described for the previous problem remain the same. We select

the regularization factors of 5 × 10−13, 5 × 10−12, and 1 × 10−10

for 0%, 0.1%, and 1% noise levels, respectively. The shear

modulus reconstructions for these noise levels are depicted in

Figs 2(f)–2(j). We observe that the reconstructions are of sim-

ilar quality to the case with fixed boundary conditions and

exhibit similar trends.

In the previous examples, we observed that the small inclu-

sion has been significantly underestimated in both problem

domains, i.e., with roller and fixed support. For most in vitro

samples, we can move and rotate the sample and with that

change the location of supports. Thus, we will make use of

this strategy to improve the contrast of the small inclusion.

More precisely, we define the problem domain with fixed

boundary conditions on the top edge, which could be

interpreted as the original sample being rotated by 180°. The

forces are applied to the bottom, left, and right boundary

edges as shown in Fig. 1(c). A vertical force of 0.2 N is

distributed over a total of eight finite element nodes as

described earlier for the problem domain in Fig. 1 and the

combination of applied forces for each simulated experiment

(total of 12) is according to Table I. The shear modulus

reconstructions are given in Figs 2(l)–2(n) for noise levels of

0%, 0.1%, and 1% and regularization factors of 5 × 10−13,

5 × 10−12, and 1 × 10−10, respectively. Figure 2(k) represents

the target shear modulus distribution for comparison. We also

provide the shear modulus values along the diagonal line

drawn in Fig. 1(c) for all noise levels together with the target

in Fig. 2(o).

We notice that the reconstructions for all noise levels

improved over the cases we discussed previously. The recon-

structed shear modulus value for the small inclusion improved

from 3.03 for the bottom fixed problem to 3.55 for the case with

no noise in both problems. We also observe similar trends as in

previous examples that with increasing noise level the recov-

ered shear modulus value in the inclusion decreases and the

inclusion diameter increases.

In the same fashion, keeping all the parameters same as in

the previous example, we now support the top boundary with

rollers as shown in Fig. 1(d) and apply forces as in the previous

example according to Table I. The shear modulus reconstruc-

tions from these experimental simulations are shown in Figs

2(q)–2(s) for the noise levels of 0%, 0.1%, and 1% with regu-

larization factors of 8 × 10−13, 5 × 10−12, and 1 × 10−10,

respectively. Figure 2(t) plots the reconstructed shear modulus

values over the diagonal line depicted in Fig. 1(d). Overall, the

shear modulus reconstructions are similar to the case with top

boundary fixed conditions.

According to Morozov’s discrepancy principal, the relative

correlation between measured and computed displacements in

Eq. (1) should be of the order of the noise level. To show

that this is indeed the case, we calculate the relative discrepancy

with the following formula:

e =
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and summarize the calculations in Table II for all previous

examples. We observe that the noise level differs by about a

factor of 2 from the relative discrepancy for the noise levels

of 0.1% and 1%, and is very small for the case with no noise.
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We also calculate the error in the shear modulus reconstruc-

tion according to

e =

������������

�m− �m0
( )2

�m0
( )2

√

√

√

√ × 100%

where �m and �m0 are average recovered shear modulus and tar-

get shear modulus observed for a particular region of the

domain, respectively (see Table III).

Comparison of the shear modulus reconstruction with the

target values is carried out for the stiff inclusions and the back-

ground material. For the average reconstructed shear modulus

value of background material, the aberrations near the edge

of the inclusions are neglected when calculating the error.

Two-dimensional problem domain with nine
stiffness inclusions
In this section, we consider a 1 cm × 1 cm domain with nine

stiff inclusions of radii 0.07 cm shown in Fig. 3(a) with varying

support locations. The vertical locations of the inclusion centers

are at 0.3, 0.5, and 0.75 cm from the bottom edge, and the hor-

izontal locations of the inclusion centers are at 0.3, 0.55, and

0.75 cm from the left edge. The shear modulus of all inclusions

is 50 kPa, while the background has a shear modulus value of

10 kPa. The problem domain is discretized with 7200 linear tri-

angular elements (61 nodes are uniformly distributed in each

direction). Each indentation is applied in a separate simulated

experiment with a total number of 28 simulated experiments.

In each simulated experiment, nodal forces of 0.1 N are applied

to three neighboring nodes. Thus, the total force applied in each

simulated experiment is 0.3 N. Figures 3(c)–3(e) represent the

shear modulus reconstructions for 0%, 0.1%, and 1% noise,

respectively, together with the target problem domain in

Fig. 3(b) as comparison. It is observed that with increasing

noise level, the shear modulus values of the inclusions decrease

Figure 2. (a) Target shear modulus distribution and (b)–(d) shear modulus reconstructions for 0%, 0.1%, and 1% noise levels for bottom boundary with fixed
support [Fig. 1(a)], respectively. (f) Target shear modulus distribution and (g)–(i) shear modulus reconstructions for 0%, 0.1%, and 1% noise levels for bottom
boundary with roller support [Fig. 1(b)], respectively. (j) Target shear modulus distribution and (l)–(n) shear modulus reconstructions for 0%, 0.1%, and 1%
noise levels for top boundary fixed [Fig. 1(c)], respectively. (p) Target shear modulus distribution and (q)–(s) shear modulus reconstructions for 0%, 0.1%, and
1% noise levels for top boundary with roller support [Fig. 1(d)], respectively. (e), (j), (o), and (t) Shear modulus plot over diagonal line for reconstructed shear
modulus with 0%, 0.1%, and 1% noise levels for bottom boundary with fixed support [Fig. 1(a)], bottom boundary with roller support [Fig. 1(b)], top boundary
fixed [Fig. 1(c)], and top boundary with roller support [Fig. 1(d)]. Note: SM represents reconstructed shear modulus (unit in the color bar: 10 kPa).

Table II. Relative discrepancy for each case presented in Figs 1 and 2.

Boundary condition Noise level
(%)

Relative discrepancy
(%)

Bottom edge-fixed 0 0.003151

0.1 0.059980

1 0.580657

Bottom edge-rollers 0 0.005214

0.1 0.06682

1 0.675559

Top edge-fixed 0 0.005512

0.1 0.056916

1 0.573083

Top edge-rollers 0 0.006342

0.1 0.063206

1 0.638769
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Table III. Relative error in shear modulus of inclusions and background.

Boundary condition Noise level (%) Relative error in reconstructed shear modulus

Large inclusion (%) Small inclusion (%) Background material (%)

Bottom edge-fixed 0 0.93 39.60 2.50

0.1 1.07 51.40 0.20

1 0.53 62.40 10.10

Bottom edge-rollers 0 0.93 44.80 3.20

0.1 2.00 52.00 3.10

1 1.73 63.40 15.90

Top edge-fixed 0 2.80 28.80 0.10

0.1 2.40 39.60 0.20

1 4.40 50.80 6.00

Top edge-rollers 0 2.40 30.20 0.10

0.1 2.80 37.60 1.00

1 6.13 50.00 8.00

Figure 3. (a) Seven indentations are applied on each side sequentially, while the opposite side is roller supported. The center node of the supported side is fixed
to avoid rigid body motion. Distance between adjacent indentations is 0.1 cm. Each arrow represents a single indentation that is applied in a single simulated
experiment (total of 28). (b) Target shear modulus distribution; (c) reconstruction with zero noise; (d) reconstruction with 0.1% noise; (e) reconstruction with
1% noise. Comparison of reconstructed and target shear moduli over the horizontal lines passing through the center of the inclusions (f) on the bottom row; (g)
on the middle row; (h) on the top row (unit in the color bar: 10 kPa).
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and their shapes deteriorate. Figures 3(f)–3(h) is the recon-

structed and target shear moduli over the horizontal lines pass-

ing through the center of the inclusions on different rows.

Overall, the inclusions are well recovered.

In Table IV, we report the regularization factors selected for

each noise level and the relative discrepancy in the data fit

defined in the “Methods” section. It is observed that the dis-

crepancy is of the order of the noise level for 0.1% and 1%

noise.

Three-dimensional problem domain with one
stiff inclusion
We define a cube with side lengths of 1 cm [see Fig. 4(a)] con-

taining a stiff inclusion of radius 0.15 cm, with its center

located at (0.4, 0.5, 0.5) cm measured from one corner. The

shear modulus of the inclusion and background are 50 kPa

and 10 kPa, respectively. The mesh is composed of 20,738

nodes and 108,567 linear tetrahedral elements. Each edge is

discretized using 31 equally spaced nodes resulting in a struc-

tured mesh composed of 2 × 30 × 30 triangular elements on

each surface. The mesh within the cube is unstructured though.

Force indentations are applied sequentially at different loca-

tions with each indentation having a total force of 0.05 N and

being distributed over five neighboring nodes. Four indenta-

tions are applied sequentially for each simulated experiment

to the centers of the left, right, front, and back face. In

Fig. 4(a), the arrows on the right and back sides are not visible.

Five indentations are applied to the top as shown in the figure.

Thus, a total of nine simulated experiments have been obtained

and their surface displacements utilized to solve the inverse

problem. Figures 4(c)–4(e) show the reconstructed shear mod-

ulus distribution for 0%, 0.1%, and 1% noise, respectively,

together with the target problem domain in Fig. 4(b) as compar-

ison. We observe that the inclusion has been very well recov-

ered with respect to its shape and its shear modulus values

for all noise levels. We also observe that the quality of the

reconstructed solution deteriorates with increasing noise

level. Figure 4(f) plots the shear modulus over the horizontal

line passing along the intersection of the two planes shown in

Fig. 4(a) and passing through the center of the inclusion.

In Table V, we report the regularization factors selected for

each noise level and the relative discrepancy in the data fit

defined in the “Methods” section. It is observed that the

discrepancy is in the order of the noise level for 0.1% and

1% noise.

In Table VI, we report the relative error in the reconstructed

shear moduli for inclusion and background with and without

noise for several selected points within these regions. We

observe that the error increases with the noise level with the

exception of error in the background from no noise to 0.1%

noise. This may be due to the fact that the error with 0.2%

and 0.11% is quite low. We also report the computational

time to be of the order of hours for the three-dimensional com-

putations (about 8 h depending on how many iterations are

needed).

Discussion
In this paper, we analyzed the performance of solving the

inverse problem in elasticity for the shear modulus distribution

for two two-dimensional problem domains and a three-

dimensional problem domain using solely boundary displace-

ments that could be measured using digital camera techniques

and known force applications. The two-dimensional problems

were modeled as plane strain, thus displacements can only be

measured on the boundary edges and not on the entire face,

since these are not accessible for camera imaging. On the

other hand, for plane stress problems, full-field displacements

(i.e., displacements on the entire face) can be measured to

solve the inverse problem with a rich data set. This was demon-

strated in past studies by the authors with experimental data

using a DIC system[17] and simulated data.[18] Full field dis-

placements yield a rich measurement data set that will facilitate

to obtain a unique solution.

In this paper, we observe that it is feasible to solve the

inverse problem in two-dimensional space for a plane strain

problem using solely boundary displacement data. However,

we do acknowledge that it is significantly harder than solving

the inverse problem with full-field displacements. For the two-

dimensional examples, we introduced one case with two inclu-

sions having distinct stiffness values and diameters. We

observed that the small inclusion being further away from

the boundary edges was harder to recover than the larger inclu-

sion being closer to the boundary edges. Furthermore, we real-

ized that supports (roller and fixed) in proximity of the

inclusions aggravates their reconstructions. The choice of sup-

port, roller or fixed, did not make a significant difference in the

shear modulus reconstructions. Additionally, we presented the

solution of the inverse problem in three dimensions, but uti-

lized a coarse mesh with 20,738 nodes and 108,567 linear tet-

rahedral elements to reduce computational time overall. This

implies that the three-dimensional problem consisted of

20,738 unknown shear moduli. Our inverse solution strategy

successfully recovered the shear modulus distribution utilizing

only nine boundary displacement data sets from simulated

experiments.

We added white Gaussian random noise to the simulated

boundary displacements to mimic actual displacement mea-

surements, e.g., using digital cameras. The noise levels of

Table IV. Regularization, relative discrepancy, and number of iterations for
cases presented in Fig. 3.

Noise
level

Regularization Relative
discrepancy

Number of
iterations

0 1 × 10−13 6.22 × 10−5 18,913

0.1% 1 × 10−12 8.51 × 10−4 3014

1% 1 × 10−11 8.13 × 10−3 1524
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0.1% and 1% are significantly higher than the noise levels

anticipated from actual displacement measurements using dig-

ital cameras and displacement-tracking programs. We observed

that with increasing noise level, the shear modulus reconstruc-

tions deteriorated overall. In more detail, with increasing noise

levels (1) the shear modulus values in the stiff inclusions and

background decreased, (2) the inclusion shapes deteriorated,

and (3) oscillations in the shear modulus distributions were

more pronounced.

We acknowledge that utilizing white Gaussian noise may

not fully represent noisy data from actual experimental mea-

surements. In our earlier publication[17] we have used a DIC

system to measure full-field displacement data to solve the

inverse problem for a problem domain having two inclusions

Figure 4. (a) Boundary conditions. Each arrow represents a single indentation used for each simulated experiment (top subfigure). Shear modulus: (b) target
distribution; (c) reconstruction with zero noise; (d) reconstruction with 0.1% noise; (e) reconstruction with 1% noise. Comparison of reconstructed and target
shear moduli over the horizontal lines passing through the center of the inclusion along the intersection of the planes depicted in (f) (unit in the color bar: 10 kPa).

Table V. Regularization, relative discrepancy, and number of iterations for
cases presented in Fig. 4.

Noise
level

Regularization Relative
discrepancy

Number of
iterations

0 1 × 10−12 2.55 × 10−5 7117

0.1% 2 × 10−12 7.58 × 10−14 4099

1% 5 × 10−12 7.51 × 10−3 1831

Table VI. Relative error in shear modulus for inclusion and background.

Noise level (%) Relative error in reconstructed shear modulus

Inclusion (%) Background (%)

0 0.91 0.20

0.1 6.92 0.11

1 24.43 8.61
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of varying sizes. Therein, we also simulated data acquisition

with finite element methods and added white Gaussian random

noise to the simulated displacement measurements. We

observed that the results from simulated experiments closely

resembled the results using actual experimental measurements,

thus the type of noise as well as the noise level seem to be a

reasonable assumption. Nevertheless, future works will focus

on a proof of concept using actual experimental data obtained

via a DIC system.

The shear moduli in the inclusions were assumed to be 5 and

7.5 times stiffer than the background. As the stiffness ratio of

inclusion to background becomes smaller and approaches 1,

it is expected that the sensitivity of this method may not be suf-

ficient to infer the shear modulus distribution accurately. On the

other hand, if the stiffness ratio of inclusion to background is

being increased and grows large, the inclusion will relatively

behave like a rigid solid and sensitivity of displacement

response may be compromised to infer the shear modulus dis-

tribution accurately. Additional factors that may affect the accu-

racy of the reconstructions are the total number of inclusions

being modeled and the noise level. To explore the limitations

of this inverse approach with respect to the discussion above,

a large number of computations needs to be performed and is

beyond the scope of this paper.

It is understood that most soft tissues as well as engineered

soft tissue scaffolds have a pronounced non-linear mechanical

response and non-linearity has not been modeled in this paper.

The non-linear elastic response however is typically observed at

large deformations; thus, given that the overall deformations

are small, a linear elastic constitutive model may be sufficient

to represent the mechanical response at small strains. We

note that non-linear constitutive models can conveniently be

implemented in the inverse problem formulation by changing

the constraint of the optimization problem and modifying the

adjoint equations accordingly. While it is anticipated that map-

ping the non-linear model parameters may be significantly

harder to map with boundary displacement measurements

and may also be more sensitive to measurement noise, we

have not tested it at this point and will be part of our future

studies.

Maybe more importantly than representing the non-linear

mechanical behavior of the specimen would be to use the

shear modulus distribution from the linear elastic model to

delineate the morphology of soft tissues. For example, the mor-

phology of the entire breast could potentially be mapped in vivo

and non-invasively via the shear modulus reconstruction and

could aid in visualizing tumors, lobes of the mammary gland,

or ducts. It could also help to monitor the changes in extracel-

lular matrix (ECM) of engineered tissues non-destructively,

e.g., after seeding a hydrogel with cells. As these cells secrete

collagen fibers, the structural integrity of the ECM changes

and with that the shear modulus. These shear modulus distribu-

tions will significantly differ from the inclusion models in this

paper and may in part need to be modeled as functionally

graded materials. Since the shear moduli in the present inverse

formulation are unknowns on finite element mesh nodes and

interpolated with finite element shape functions, continuity of

the shear modulus distribution in the problem domain is war-

ranted and functionally graded materials representable. In this

paper, the inclusions had abrupt changes at their interface and

future works will include testing of this approach with function-

ally graded materials. Finally, we also acknowledge that our

models do not take into account anisotropy and feasibility of

mapping anisotropic elastic properties using boundary dis-

placement measurements will be subject for future studies.

Conclusions
We presented for the first time the feasibility to recover the

volumetric shear modulus distribution in three-dimensional

space using surface displacements only. We recovered the

shear modulus distribution of a stiff inclusion within a cubic

softer background. Due to computational time constraints

of three-dimensional problems, we analyzed the feasibility

of more involved shear modulus distributions using two-

dimensional problems. The results of this paper are encourag-

ing and may open up new opportunities to characterize

heterogeneous materials for their mechanical property distribu-

tion. We acknowledge that the experiments in this paper were

simulated including high noise levels, and actual experimental

data are needed to further analyze the potential of this approach.
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